Topological aspects of Chow quotients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Aspects of Chow Quotients

This paper studies the canonical Chow quotient of a smooth projective variety by a reductive algebraic group. The main observation of this paper is that, over the field of complex numbers, the Chow quotient admits symplectic and other topological interpretations, namely, symplectically, the moduli spaces of stable orbits with prescribed momentum charges; and topologically, the moduli space of s...

متن کامل

Chow Quotients and Euler - Chow Series

Given a projective algebraic variety X, let p(X) denote the monoid of eeective algebraic equivalence classes of eeective algebraic cycles on X. The p-th Euler-Chow series of X is an element in the formal monoid-ring Z p(X)] ] deened in terms of Euler characteristics of the Chow varieties Cp;; (X) of X, with 2 p(X). We provide a systematic treatment of such series, and give projective bundle for...

متن کامل

Chow Quotients of Grassmannians Ii

1.0 Properties of M0,n ⊂ M0,n. (1) M0,n has a natural moduli interpretation, namely it is the moduli space of stable n-pointed rational curves. (2) Given power series f1(z), . . . , fn(z) which we think of as a one parameter family in M0,n one can ask: What is the limiting stable n-pointed rational curve in M0,n as z → 0 ? There is a beautiful answer, due to Kapranov [Kapranov93a], in terms of ...

متن کامل

6 Toric Degenerations of Git Quotients , Chow Quotients

The moduli spaceM0,n plays important roles in algebraic geometry and theoretical physics. Yet, some basic properties of M 0,n still remain open. For example, M0,n is rational and nearly toric (that is, it contains a toric variety as a Zariski open subset), but it is not a toric variety itself starting from dimension 2 (n ≥ 5). So, a basic question is: Can it be degenerated flatly to a projectiv...

متن کامل

Chow Quotients and Projective Bundle Formulas for Euler-chow Series

Given a projective algebraic variety X, let Πp(X) denote the monoid of effective algebraic equivalence classes of effective algebraic cycles on X. The p-th Euler-Chow series of X is an element in the formal monoid-ring Z[[Πp(X)]] defined in terms of Euler characteristics of the Chow varieties Cp,α (X) of X, with α ∈ Πp(X). We provide a systematic treatment of such series, and give projective bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2005

ISSN: 0022-040X

DOI: 10.4310/jdg/1122493996